Connecting IoT fleets with LoRaWAN

For connecting IoT devices over the internet there are several network protocols available like ZigBee, Bluetooth, BLE, WiFi, LTE-M, NB-IoT, Z-Wave, LoRa and LoRaWAN. Each one serves its own purpose and brings its own feature combinations. In this blog post I go through a very interesting low power and long range protocol LoRaWAN.

Explaining the concepts

LoRa (Long Range) is a wireless radio modulation technology, originated from Chirp Spread Spectrum (CSS) technology. It encodes information on radio waves using frequency modulated chirp pulses. It is very ideal for transmitting data in small chunks, with low bit rates and at a longer range compared to WiFi, ZigBee or Bluetooth. Typical range is 2-8km depending on the network environment. It is a good fit for applications that need to operate in low power mode. 

LoRaWAN is a wide area networking protocol built on top of the LoRa. It defines the bi-directional communication protocol, network system architecture, principles how devices connect to gateways and how gateways process the packets and how packets find their way to network servers. Whereas LoRa enables the physical network and enables the long-range communication link. 

Taking a look at this from the OSI (Open Systems Interconnection) model of computer networking. LoRaWAN is a Media Access Control (MAC) protocol on OSI model layer 2, whereas LoRa defines the physical layer on the bottom layer, meaning transmitting of raw bits over a physical data link. LoRaWAN defines 3 device types, Class A, B and C for different power needs. Class A is suitable for bi-directional communication.

LoRa and LoRaWAN sitting on OSI model

 

Now when we understand LoRa and LoRaWAN differences we can take a look at typical network architecture. It consists of LoRaWAN enabled devices (sensors or actuators), which are connected wirelessly to the LoRaWAN network using LoRa. The Gateway receives LoRa RF messages and forwards those to the network server. All the network traffic can be bi-directional (depending on LoRaWAN device classification), so the Gateway can also deliver messages to the device. Devices are not associated with a specific gateway, Instead, the same sensor can be served by multiple gateways in the area. 

The network server is responsible for managing the entire network. It forwards the payloads to application servers, queues payloads coming from the application server to connected devices and forwards join request- and accept-messages between devices and the join server. Application servers are responsible for securely handling, managing and interpreting device data and also generating payloads towards connected devices. Join server is responsible for the OTA (Over-The-Air) activation process for adding devices to the network.

Typical LoRaWAN network architecture

 

LoRaWAN is deployed widely and globally. There are public network operators in many countries, like here in Finland, Sweden and Norway. Take a look at public network operators and open community networks.

LoRaWAN is globally deployed

Where is it used?

Low power, long range and low cost connectivity are the top LoRaWAN benefits. These enable and make new use cases possible. Just to mention few

  • Asset tracking – Track the location and condition of business critical equipment like containers location or cargo temperature or other equipment condition. 
  • Supply chain monitoring – For example monitor food, medicine and other goods that need to be stored in a certain temperature through the entire supply-chain from production to storage and delivery.
  • Smart Water and Energy management – Monitor water and energy consumption
  • Smart environment – Air condition, loudness, air pressure, space optimization, building security, failure prediction.

Read more from LoRa Alliance pages and also from our data driven initiatives and solution like building everyday tools for EU citizens to combat climate change, circular economy, Fortum electricity retail business and Edge computing starts new era of intelligence in forest harvesting.

 

Do I have to do all this by myself?

You can find the LoRaWAN network server as an open source product and deploy it to any cloud environment. But deploying, maintaining and operating the network server, join server and application servers can be a pain and not so easy to get started with. 

Amazon hyperscaler can help with this. Amazon IoT Core has the LoRaWAN capability, which is a fully managed solution for connecting and managing LoRaWAN enabled devices with the AWS Cloud. With the IoT Core for LoraWAN you can set up a private network by connecting devices and gateways to the AWS Cloud, and there is no need for developing or operating the network server. By using the AWS technologies for LoRaWAN network the architecture looks like this:

Private LoraWAN network using AWS IoT Core

 

How about the real devices

For example for asset tracking there are plenty of devices available on the market. I recently bought a LoRaWAN capable GPS tracking device and indoor LoRaWAN gateway. The tracker is small pocket/keychain size and the gateway is easy to register to the AWS cloud.

LoRaWAN GPS tracker and gateway

 

The power of low power is powerful

LoRaWAN is not ideal in all environments, like where you need low latency, high bandwidth and continuous availability.

But if you need a low power environment, like battery powered for a few years, long range and cost efficient data transfer, then LoRaWAN might be your choice. 

Check out our Connected Fleet Kickstart for boosting development for Fleet management and LoRaWAN:

https://www.solita.fi/en/connected-fleet/

And take a look other blog posts related to the IoT scene like M2M Meets IoT.

 

 

M2M meets IoT

M2M has been here for decades and is the foundation for IoT

In this blogpost I continue discussion around Industrial Connected Fleets from the M2M (machine-to-machine) point-of-view. 

M2M and IoT. Can you do one without another?

M2M machine-to-machine refers to an environment where networked machines communicate with each other without human intervention. 

Traffic control is one example of an M2M application. There multiple sensing devices collect traffic volume and speed data around the city and send the data to an application that controls the traffic lights. The intelligence of this application makes traffic more fluent and opens bottlenecks and helps traffic flow from city areas to another. No human intervention is needed.

Another example is the Auto industry, where cars can communicate with each other and with infrastructure around them. Cars create a network and enable the application to notify drivers about the road or weather conditions. Also in-car systems are using M2M for example rain detectors together with windshield wiper control.

There are lots of examples where M2M can be used. In addition to the above, it is worth mentioning the Smart Home and Office applications, where for example one device measures direct sunlight near the window and notifies the window blind controller to close the blinds when brightness threshold value is crossed. Another very interesting M2M areas are robotics and logistics.

M2M sounds a lot like IoT. What’s the difference? Difference is in network architecture. On M2M Internet connectivity is not a must. Devices and device networks can communicate without it. M2M is point-to-point communication and typically targets single devices to use short-range communication (wired or wireless). Whereas IoT enables devices to communicate with cloud platforms over the internet and gives cloud computing and networking capabilities. The data collected by IoT devices are typically shared with other functions, processes and digital services whereas M2M communication does not share the data. 

I can say that IoT extends the capabilities of M2M.

 

Networking in M2M

M2M does not necessarily mean point-to-point communication. It can be point-to-multiple as well. Communication can be wired or wireless and network topology can be ring, mesh, star, line, tree, bus, or something else which serves the application best, as M2M systems are typically built to be task or device specific.

Figure 1. Network topology

 

For distributed M2M networks there are a number of wireless technologies like Wifi, ZigBee, Bluetooth, BLE, 5G, WiMax. These can also be implemented in hardware products for M2M communication. Of course one option is to build a network with wired technology as well.

There are few very interesting protocols for M2M communication, which I go through at a high level. These are DDS, MQTT, CoAP and ZeroMQ.

The Data Distribution Service DDS is for real-time distributed applications. It is a decentralized publish/subscribe protocol without a broker. Data is organized to topics and each topic can be configured uniquely for required QoS. Topic describes the data and publishers and subscribers send and receive data only for the topics they are interested in. DDS supports automatic discovery for publishers and subscribers, which is amazing! This makes it easy to extend the system and add new devices automatically in plug-and-play fashion.

MQTT is a lightweight publish subscribe messaging protocol. This protocol relies on the broker to which publishers and subscribers connect to and all communication routes through the broker (Centralized). Messages are published to topics. Subscribers can decide which topic to listen to and receive the messages. Automatic discovery is not supported on MQTT.

CoAP (Constrained Application Protocol) is for low power electronic devices “nodes”. It uses an HTTP REST-like model where servers make resources available under URL. Clients can access resources using GET, PUT, POST and DELETE methods. CoAP is designed for use between devices on the same network, between devices and nodes on the Internet, and between devices on different networks both joined by an internet. It provides a way to discover node properties from the network. 

ZeroMQ is a lightweight socket-like sender-to-receiver message queuing layer. It does not require a broker, instead devices can communicate directly with each other. Subscribers can connect to the publisher they need and start subscribing messages from their interest area. Subscriber can also be a publisher, which makes it possible to build complex topology as well. ZeroMq does not support Automatic discovery.

As you can see there is a variety of these protocols with features. Choose the right one based on your system requirements.

 

Make Fleet of Robots work together with AWS

DDS is great for distributed M2M networks. For robotics there is the open-source framework ROS (Robot Operating System). The version 2 (ROS2) is built on top of DDS. With the help of DDS, ROS nodes can communicate easily within one robot or between multiple robots. For example 3D visualization for distributed robotics systems is one of ROS enabled features.

Figure 2. Robot and ROS

 

I recommend you check AWS IoT RoboRunner service. It makes it easier to build and deploy applications that help fleets of robots work together. With the RoboRunner, you can connect your robots and work management systems. This enables you to orchestrate work across your operation through a single system view. Applications you build in AWS RoboMaker are based on ROS. With the RoboMaker you can simulate first without a need for real robotics hardware.

Our tips for you

It’s very clear that M2M communication brings advantages like:

  • Minimum latency, higher throughput and lower energy consumption
  • It is for mobile and fixed networks (indoors and outdoors)
  • Smart device communication requires no human intervention
  • Private networks brings extra security

And together with IoT, the advantages are at the next level.

Supercharge your system with a distributed M2M network and make it planet scaled with AWS IoT services. The technology is supporting very complex M2M networks where you can have distributed intelligence spread across tiny low power devices. 

Check out our Connected Fleet Kickstart for boosting development for Fleet management and M2M: 

https://www.solita.fi/en/connected-fleet/

 

 

Manufacturing security hardening

Securing IT/OT integration

 

Last time my colleague Ripa and I discussed about industrial UX and productivity. This time I focus on factory security especially in situations when factories will be connected to the cloud.

Historical habits 

As we know for a long time manufacturing OT workloads were separated from IT workloads. Digitalization, IoT and edge computing enabled IT/OT convergence and made it possible to take advantage of cloud services.

Security model at manufacturing factories has been based on isolation where the OT workload could be isolated and even fully air-gapped from the company’s other private clouds. I recommend you to take a look at the Purdue model back from the 1990s, which was and still is the basis for many factories for giving guidance for industrial communications and integration points. It was so popular and accepted that it became the basis for the ISA-95 standard (the triangle I drew in a blog post). 

Now with new possibilities with the adoption of cloud, IoT, digitalization and enhanced security we need to think: 

Is the Purdue model still valid and is it just slowing down moving towards smart and connected factories?

Purdue model presentation aligned to industrial control system

 

Especially now that edge computing (manufacturing cloud) is becoming more sensible, we can process the data already at level 1 and send the data to the cloud using existing secured network topology. 

Is the Purdue model slow down new thinking ? Should we have Industrial Edge computing platform that can connect to all layers?

 

Well architected

Thinking about the technology stack from factory floor up to AWS cloud data warehouses or visualizations, it is huge! It’s not so straightforward to take into account all the possible security principles to all levels of your stack. It might even be that the whole stack is developed during the last 20 years, so there will be legacy systems and technology dept, which will slow down applying modern security principles. 

In the following I summarize 4 main security principles you can use in hybrid manufacturing environments:

  • Is data secured in transit and at rest ? 

Use encryption and if possible enforce it. Use key and certificate management with scheduled rotation. Enforce access control to data, including backups and versions as well. For hardware, use Trusted Platform Module (TPM) to store keys and certificates.

  • Are all the communications secured ? 

Use TLS or IPsec to authenticate all network communication. Implement network segmentation to make networks smaller and tighten trust boundaries. Use industrial protocols like OPC-UA.

  • Is security taken in use in all layers ? 

Go through all layers of your stack and verify that you cover all layers with proper security control.

  • Do we have traceability ? 

Collect log and metric data from hardware and software, network, access requests and implement monitoring, alerting, and auditing for actions and changes to the environment in real time.

 

Secured data flow 

Following picture is a very simplified version of the Purdue model aligned to manufacturing control hierarchy and adopting AWS cloud services. It focuses on how manufacturing machinery data can connect to the cloud securely. Most important thing to note from the picture is that network traffic from on-prem to cloud is private and encrypted. There is no reason to route this traffic through the public internet. 

Purdue model aligned to manufacturing control hierarchy adopting AWS cloud

 

You can establish a secure connection between the factory and AWS cloud by using AWS Direct Connect or AWS Site-to-Site VPN. In addition to this I recommend using VPC endpoints so you can connect to AWS services without a public IP address. Many AWS services support VPC endpoints, including AWS Sitewise and IoT Core.

Manufacturing machinery is on layers 0-2. Depending on the equipment trust levels it’s a good principle to divide the whole machinery into cells / sub networks to tighten trust boundaries. Machinery with different trust levels can be categorized in its own cells. Using industrial protocols, like OPC-UA, brings authentication and encryption capabilities near the machinery. I’m very excited about the possibility to do server initiated connections (reverse connect) on OPC-UA, which makes it possible for clients to communicate with server without firewall inbound port opening.

As you can see from the picture, data is routed through all layers of and looks like layers IDMZ (Industrial Demilitarized Zone), 4 and 5 are almost empty. As discussed earlier, only for connecting machinery to the cloud via secure tunneling we could bypass some layers. But for other use cases the layers are still needed. If for some reason we need to route factory network traffic to AWS Cloud through the public internet, we need a TLS proxy on IDMZ to encrypt the traffic and protect the factory from DDoS attacks (Distributed Denial of Service attack).

The edge computing unit on Layer 3 is a AWS Greengrass device which ingests data from factory machinery, processes the data with ML and sends only the necessary data to the cloud. The unit can also discuss and ingest data from Supervisory Control and Data Acquisition (SCADA), and Distributed Control System (DCS) and other systems from manufacturing factories. AWS Greengrass uses x509 certificate based authentication to AWS cloud. Idea is that the private key will not leave from the device and is protected and stored in the device’s TPM module. All the certificates are stored to AWS IoT Core and can be integrated to custom PKI. For storing your custom CA’s (Certificate Authority) you can use AWS ACM. I strongly recommend to design and build certificate lifecycle policies and enforce certificate rotation for reaching a good security level.

One great way of auditing your cloud IoT security configuration is to audit it with AWS IoT Device Defender. Also you can analyse the factory traffic real-time, find anomalies and trigger security incidents automatically when needed.

 

Stay tuned

Security is our best friend, you don’t need to be afraid of it.

Build it to all layers, from bottom to top in as early a phase as possible. AWS has the security capabilities to connect private networks to the cloud and do edge computing and data ingesting in a secure way. 

Stay tuned for next posts and check out our Connected Factory Kickstart if you haven’t yet

https://www.solita.fi/en/solita-connected/

 

Productivity and industrial user experience

Digital employee is not software robot

 

The last post was about data contextualisation and today on this video blog post we talk about the Importance of User Experience in an Industrial Environment.

UX versus employee experience

User Experience (UX) design is the process design teams use to create products that provide meaningful and relevant experiences to users. 

Employee experience is a worker’s perceptions about his or her journey through all the touchpoints at a particular company, starting with job candidacy through to the exit from the company. 

Using modern, digital tools and platforms can support employee experience and create competitive advantage. Especially working on factory systems and remote locations it’s important to keep good productivity and one option is cloud based manufacturing.

Stay tuned for more and check our Connected Factory kickstart:

https://www.solita.fi/en/solita-connected/

Factory Floor and Edge computing

Happened last time

In the first part of this blog series I discussed the industry 4.0 phenomenon: Smart and Connected Factory, what benefits it brings, what is IT/OT convergence and gave a short intro about Solita’s Connected Factory Kickstart

This part is more focused on the data at Factory floor and how AWS services can help in ingesting the data from factory machinery.

Access the data and gain benefits from Edge computing

So what is the data at the Factory floor? It is generated by machinery systems using many sensors and actuators. See the following picture where on the left there is a traditional ISA-95 pyramid for factory data integrating each layer with the next. The right side represents new thinking where we can ingest data from each layer and take advantage of IT/OT convergence using AWS edge and cloud services.

PLC (Programmable Logic Controller) typically has dedicated modules for inputs and dedicated modules for outputs. An input module can detect the status of input signals like switches and an output module controls devices such as relays and motors.

Sensors are typically connected to PLC’s. To access the data and use it in other systems, PLC’s can be connected to an OPC-UA server. The server can provide access to the data. One traditional use case is to connect PLC to factory SCADA systems for high level supervision of machines and processes. OPC-UA defines a generic object model and each object can be associated with data type, timestamp, data quality and current value and they can have a hierarchy. Every kind of device, function, and system information can be described using this meta model.

 

AWS services that ease data access at the factory

AWS Greengrass is an open source edge software which integrates to AWS Cloud. It enables local processing, messaging, Machine Learning (ML) inference, device mesh and many pre-baked software components for speed up application development. 

AWS Sitewise is a cloud service for collecting and analyzing data from factory environments. It provides Greengrass compatible edge components for example for data collection from OPC-UA server and for streaming data to AWS Sitewise. Sitewise has a built in time-series database, data modeling capabilities, API layer and portal, which can be deployed and run at the edge as well (which is amazing!). 

The AWS Sitewise asset and data modeling is for making a virtual presentation of industrial equipment or process. Data model supports hierarchies, metrics and real time calculations, for example for calculating OEE (Overall Equipment Effectiveness). Each asset is enforced to use data mode that validates incoming data and schema.

Why industrial use cases with AWS?

I prefer more hands-on work than reading Gartner papers; anyhow AWS has been named as a Leader for the eleventh consecutive year and has secured the highest and furthest position on the ability to execute and completeness of vision axes in the 2021 Magic Quadrant for Cloud Infrastructure and Platform Services. It’s very nice to see how AWS is taking industrial solutions seriously and packaging those to a model that is easy to take in use for building digital services to the factory floor and cloud.  

 1. AWS Sitewise – The power of data model, ingest, analyze and visualize

Sitewise packages nice features which I feel are the greatest are the data and asset modeling, near real time metric calculations (even on edge), visualization and build in time series database. Sitewise is nicely supported by CloudFormation, so you can automate the deployment and even build data models according to your OPC-UA data model automatically (Meta driven Industry standard data model). The Fact that there are edge processing and monitoring capabilities with a portal available makes the Sitewise a really competitive package.

2. AWS Greengrass – Edge computing and secure cloud integration

Speeds up edge application development with public components, like the OPC-UA collector, StreamManager and Kinesis Firehose publisher. The latest Greengrass version 2.x has evolved and has lots of great features. You can provision and run a solution on real hardware or simulate on an EC2 instance or Docker, as you wish. One way to provision Greengrass devices to AWS cloud is to use IoT Fleet Provisioning, where certificates for the device are created on the first connection attempt to the cloud. Applications are easy to deploy from cloud IoT Core to edge Greengrass instances. You can also run serverless AWS Lambdas at the edge, which is really superb! All in all, the complete Greengrass 2.0 package will speed up development.

3. Cloud and Edge – Extra layer of Security

SItewise and Greengrass use AWS IoT Core security features, like certificate based authentication, IoT policies, TLS 1.2 on transport and device defender, which brings the security to a new level. It’s also possible to use custom Certificate Authorities (CA) to issue edge device certificates. Custom CA’s can be stored in AWS CloudHSM and AWS Certificate Manager. Now I can really say that security is our best friend.

4. Agile integration to other solutions

Easy way for integrating data to other solutions is to use Sitewise Edge and Cloud APIs. If you deploy Sitewise to the edge the API is usable there as well, and you can use the data for other factory systems, like MES (Manufacturing Execution System). At least I think this will combine the IT and OT worlds like never before.

5. AutoML for Edge computing

AutoML is for people like me and citizen data scientists, something that will speed up business insights when creating a lot of notebooks or python code is not needed anymore.

These AutoML services are used to organize, track and compare Machine Learning training. When auto deploy is turned on the best model from the experiment is deployed to the endpoint and the best model is automatically selected using the Bandit algorithm. Besides these Amazon SageMaker model monitor will continuously monitor the quality of your machine learning models in real time and I can focus on talking with people and not only machines. 

 

Stay tuned for more

I think that AWS is making it easier to combine cloud workloads with edge computing. Stay tuned for the next blog post where we dig more into the cloud side of this, including Sitewise, Asset and data model, visualization and alarms. And please take a look at the “Predictive maintenance data kickstart” if you haven’t yet:

https://www.solita.fi/en/solita-connected/

 

Smart and Connected Factories

Smart connected factories are a phenomenon of the fourth industrial revolution, Industry 4.0.

What is a connected factory?

Connected Factories utilizes machinery automation systems and additional sensors to collect data from manufacturing devices and processes. The data can be analyzed and processed on site at the factory, before being sent to the cloud platforms for historical and real time data analysis. Connected factory enables a holistic view for data over all customer factories. Connectivity is a key enabler of  IT/OT convergence.

Operational Technology (OT) consists of software and hardware systems that control and execute processes at the factory floor. Typically these are MES (Manufacturing Execution System), SCADA (Supervisory Control And Data Acquisition) and PLCs (Programmable Logic Controllers) at manufacturing factories. 

Whereas Information Technology (IT) refers to the information infrastructure covering network, software and hardware components for storing, processing, securing and exchanging data. IT consists of laptops and servers, software, enterprise systems software like ERPs, CRMs, inventory management programs, and other business related tools.

Historically OT is separated from IT. In recent years industrial digitalization, connectivity and cloud computing have made it possible for OT and IT systems to join and share data with each other. On IT/OT data convergence factory floor OT data is combined with IT data:

IT/OT Convergence
IT/OT Convergence

 

When IT and OT collide we need to align things like “How to handle different networks and control the boundaries between them”. IT and OT networks are totally for different purposes and they have different security, availability and maintainability principles. IT/OT convergence can definitely be beneficial for the company but at the same time it might pop up new challenges for the traditional OT world, like “How often and what kind of data should we upload to the cloud?” and “What are the key attributes to combine different data assets?”. Here are few examples where IT/OT is  converged:

  • Welding station monitoring with laboratory data. Combining with IT data we can improve customer specific welding quality. 
  • Getting OT data from equipment and merging that with customer contract data we can start upselling predictive maintenance solutions.
  • Getting real time metrics it is also possible to create subscription based billing. For this we need asset basic information and CRM customer contract information.
  • Creating a Digital service book is easy when you have full traceability based on OT data joint to IT product lifecycle data.

I think that in order to combine IT and OT together is nowadays much easier than just a few years ago thanks to hyper scalers like AWS and others. Now we can see in action how Cloud can enable smart manufacturing using purpose built components like AWS Greengrass and SiteWise. Stay tuned for next blog posts where I will explain basics on Edge computing in a harsh factory environment.

 

Kickstart towards smart and connected factory

Solita has made a kickstart for companies to start a risk free journey. We package pre-baked components for edge data ingestion, edge ML, AWS Sitewise data modelling, visualization, data integration API and MLOps in one deliverable using only 4 weeks time.

Check it out from https://www.solita.fi/en/solita-connected/ and let’s connect!